

Academic year 2012-2013

Module Name		Micro and Nanoelectronic Technology				
Code		40271	40271			
Course		2.1, 2.2	2			
Timetable		See atta	ached docume	ent		
ECTS credits		10				
Module type		x Man	indatory tional			
Requirements	5	None				
Course Langu	lage	English	1			
Responsible P			errat Nafría			
Responsible Department	Responsible		Electronic Engineering			
	TEACHING TEAM					
Professor	Departm	ent	Office	e-mail	Tutorials timetable	
Gabriel Abadal	Electroni Engineer		QC-3031	gabriel.abadal@uab.es	To be determined	
Xavier Aymerich	Electroni Engineer		QC-3013	xavier.aymerich@uab.es	To be determined	
Eduard Figueras	IMB-CNM/ Electronic Engineering		CNM	eduard.figueras@ imb- cnm.csic.es	To be determined	
David Jiménez	Electronic Engineering		QC-3035	david.jimenez@uab.es	To be determined	
Jaume Esteve	IMB-CNM/ Electronic Engineering		CNM	Jaume.Esteve@imb- cnm.csic.es	To be determined	
Montserrat Nafría	Electronic Engineering		QC-3017	montse.nafria@uab.es	To be determined	

Academic year 2012-2013

Educational Objectives	When the module lecture period ends, the student will be able to:		
	-Describe the different technological processes used in micro and nanoelectronics. Evaluate the impact of these processes on the device characteristics and the main factors that affect the technology yield.		
	-Distinguish between the prope characterization of the technology	-	
	-Describe the techniques and te and nanomachining.	echnological processes of micro	
	-Identify the limitations that rel microelectronic systems.	iability imposes to	
	-Synthesize the problems associated to present CMOS technologies/devices and their potential solutions.		
	Competences	Description	
Specific competences	1. Analysis and synthesis	1. Identifies and relates the main technological processes in micro/nanoelectronics, their characterization and limitations.	
	2. Information management	2. Obtains and processes the information in the data bases and webs related to micro and nanoelectronics.	
	3. Communication	3. Communicates, in writing or orally, using the usual formats of research activities.	
	4. Skills on the use of computing tools	4. Uses commercial simulation tools related to micro and nanoelectronic processes and devices.	

F

Master in Micro and Nanoelectronic Engineering

CSIC

Structure and contents (blocks description)	1. Micro and nanoelectronic technologies: design and fabrication.(60%)
	Clean room. Substrates formation. Cleaning processes. Implantation and doping. Oxidations and annealings. Growth and deposition. Lithography and etchings. Masks and layout. Packaging. CMOS, bipolar technologies.
	2. Electrical Characterization (10%)
	Technology and device: electrical simulation. Electrical characterization of the technology. SPICE models. Parameter extraction.
	3. Microsystems technology (10%)
	Definition and application fields. Building blocks. Si micromachining technology. Integration strategies.
	4. Yield and reliability. (10%)
	Reliability in Microelectronics. Yield and Reliability roadmap. Yield and link with reliability. Reliability modeling. Techniques for yield improvement. Reliability challenges.
	5. Future of CMOS technology (10%).
	MOSFET scaling: tendencies, limitations and possible solutions. Advanced MOSFET design.
Teaching methodology	The teaching methodology will combine lectures given by the professors with student's autonomous activities (at or outside the classroom).
Assessment	The educational evaluation will be based on the activities (problems resolution, simulations, cases resolution) carried out by the students in each of the course blocks. Each of the blocks will be evaluated separately. For the global module assessment, the marks obtained in each of the blocks will be weighted by the relative block weight in the module (60% for block 1 and 10% for the rest).

References and web links	S.M. Sze, Semiconductor devices. Physics and Technology. John Wiley & Sons, 1985. Hong Xiao, Introduction to semiconductor manufacturing technology. Prentice Hall, 2001
	G.S.May & S.M.Sze, Fundamentals of Semiconductor Fabrication, Wiley International, 2004
	User's manual of the ICECREM 1D processes simulation tool
	Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2nd edition, 2009.
	W.Liu, MOSFET models for SPICE simulation, including BSIM3v3 and BSIM4, John Wiley & Sons, 2001.
	P.D.T O'Connor, Practical Reliability Engineering, John Wiley, 2003.
	M.J. Madou, Fundamentals of Microfabrication. The Science of Miniaturization (2nd edition). CRC Press, 2002.

Academic year 2012-2013

Module Name		Micro and Nanosystems (MEMS/NEMS)				
Code		40272				
Course		2.1				
Timetable						
ECTS credits		10				
Module type			Mandatory x Optional			
Requirements		None				
Course Langu	lage	English	ı			
Responsible P	rofessor	Gabrie	Gabriel Abadal Berini			
Responsible Department	· · · · · · · · · · · · · · · · · · ·		Electronic Engineering (DEE)			
			TEACHING TEAM			
Professor	Department		Office	e-mail	Tutorials timetable	
Gabriel Abadal	DEE		QC-3031	gabriel.abadal@uab.es	To be determined	
Jaume Esteve	DEE (CNM)		CNM	Jaume.Esteve@imb- cnm.csic.es	To be determined	
Joan Bausells	s DEE (CNM)		CNM	Joan.Bausells@imb- cnm.csic.es	To be determined	
Francesc Torres	DEE		QC-3059	Francesc.torres@uab.es	To be determined	
Núria Barniol	DEE		QC-3045	Nuria.barniol@uab.es	To be determined	

Academic year 2012-2013

Educational Objectives	When the module lecture period ends, the student will be able:		
	To have a global vision of MEMS and NEMS. Terminology and basic concepts.		
	To describe the phenomenology and transduction principles which are the bases of the MEMS and NEMS operation.		
	To analyze the effects on the electromechanical systems characteristics produced by the dimensional downscaling from the micro to the nanoscale.		
	To identify the different state of the art technological alternatives for the fabrication of MEMS and NEMS.		
	To apply the simulation techniques for the analysis and design of MEMS and NEMS.		
	Competences	Description	
Specific competences	1. Analysis and synthesis	1. To analyze the operation and characteristics of MEMS and NEMS and understand their features. TO design new MEMS and NEMS form specifications in terms of cost, dimensions and consumption.	
	2. Problem solving	2. To solve problems with a global and critical vision.	
	3. Innovation	3. To innovate in the strategies for fabrication and design of micro and nanosystems.	

Master in **Micro and Nanoelectronic** Engineering

Structure and contents	0. Introduction
(blocks description)	<i>To establish the module objectives, to comment on the contents</i>
(blocks description)	and evaluation method. To establish terminology, definitions of
	MEMS and NEMS. Bibliography sources, classical publications in
	the field.
	1. Microsystems technology
	Introduction of the fundamental aspects of the micromachining
	technology. Description of the fabrication processes, based on a
	generic microsystem (accelerometer example): bulk and surface
	micromachining, kinds of substrate, anodic bonding. Integration
	MEMS/NEMS-CMOS. Commercial MEMS foundries.
	2. Nanofabrication techniques
	<i>The Atomic Force Microscope (AFM) as a characterization and</i>
	nanolithography tool. Nanostencil lithography (NL). Electron
	beam lithography (EBL). Nanoimprint lithography (NIL). Focused
	Ion Beam lithography (FIB).
	3. Micro/nanoelectromechanical structures
	Static (dc) and dynamic (ac) MEMS/NEMS. Characteristics and
	figures of merit of the mechanical structures. Mechanical to
	electrical transduction techniques: piezoresistive, capacitive,
	optical and piezoelectric. Effects of the dimensional downscaling
	from micro to nano. RF-MEMS.
	4. Modelization
	Analytical electromechanical models. Approximated solutions.
	Mathematical fundamentals of the finite element simulators.
	Characteristics of some commercial simulators: COVENTOR,
	ANSYS. Co-simulators MEMS/NEMS transducer with circuitry.
	Behavioral models and simulators (VerilogA).
	5. Applications of MEMS/NEMS
	Final work presentation.
	Classroom lectures
Teaching methodology	Laboratory sessions
	Demos
	Simulations
	Characterizations
	Visits to labs and research centers related to MEMS and NEMS
	Attendance to classroom lectures and laboratory sessions. (50%)
Assessment	
	<i>Working out and presentation (ORAL + written report) of a final</i>
	work related to the design of a MEMS or NEMS. (50%)

CSIC

References and web links	Books:
	Handbook of Nanotechnology. B. Bhushan. Springer-Verlag, (2004).
	Fundamentals of Microfabrication. The Science of Miniaturization (2nd edition). M.J. Madou. CRC Press, (2002).
	Microsystems Design. S.D. Senturia. Kluwer Academic Publishers (2001).
	Sensors. Vol.7. Mechanical Sensors. W. Göpel, J. Hesse, J.N. Zemel. Wiley-VCH.
	Sensors (Update). Vol.4. H. Baltes, W. Göpel, J. Hesse. Wiley- VCH. D. Sarid. Scanning Force Microscopy. Oxford University Press, (1991).
	<i>RF MEMS. Theory, design and technology. G.M. Rebeiz. John</i> <i>Wiley and Sons (2003).</i>
	Practical MEMS. Ville Kaajakari. Small Gear Publishing. ISBN: 978-0-9822991-0-4 (2009).
	Publications:
	Sensors and Actuators A Journal of Microelectromechanical Systems
	Journal of Micromechanics and Microengineering Applied Physics Letters
	Journal of Applied Physics
	Journal of Vacuum Science and Technology B Nanotechnology
	Small
	Ultramicroscopy
	Electron Device Letters
	IEEE Journal of Solid State Circuits
	IEEE Transactions on Electron Devices
	Microelectronic Engineering

Academic year 2012-2013

Module Name Advan		ced Integrat	ed Circuits Design		
Code 40599					
Course		2.2			
Timetable					
ECTS credits		10			
Module type Ma			Aandatory Optional		
Requirements		None			
Course Langu	age	English	nglish		
Responsible P	rofessor	Núria I	úria Barniol		
Responsible		Electro	Electronic Engineering		
		TEA	CHING TEA	AM	
Professor	ssor Department		Office	e-mail	Tutorials timetable
Núria Barniol	Núria Barniol DEE		QC-3045	Nuria.barniol@uab.es	To be determined
Arantxa Uranga			QC-3035	Arantxa.uranga@uab.es	To be determined

Academic year 2012-2013

	When the module lecture period ends, the student will be able		
Educational Objectives	Describe the techniques for designing complex integrated systems.		
	Describe the main challenges for the design of integrated systems based on the evolution of technology and its applications.		
	<i>Apply simulation techniques for the analysis of integrated systems.</i>		
	Design integrated systems usin	g specific software tools.	
	Describe the main CMOS circuit techniques for RF applications and portable systems.		
	Have an overview of the main to biomedical applications.	integrated systems for specific	
	Competences	Description	
Specific competences	1. Analysis and synthesis	1. Analyze the functioning and extract the main features of the integrated systems according to their functionality.	
	2. Information management	2. Collects and processes information in databases and websites related to integrated systems.	
	3. Initiative	3. Design circuits and systems from specifications in terms of cost, size and consumption, taking into account other existing systems previously analyzed.	
	4. Skills on the use of computing tools	4. Use of commercial simulation tools related to integrated circuits and system design.	

Master in Micro and Nanoelectronic Engineering

Academic year 2012-2013

1

Structure and contents (blocks description)	 Introduction. Set goals for the course. Bibliography and related classical publications. Integrated Circuits design and systems for radio frequency applications. Main architectures for RF communication systems. Design and analysis of the basic building blocks of communication systems (amplifiers, mixers, oscillators, filters). ICs design for portable systems. Concepts and basics of telemetry circuits. Power supply management of portable integrated systems. Alternatives. IC design for biomedical applications. Basic neurophysiological concepts. Recording and stimulating the nervous system. Circuits and systems for measuring the impedance. Low noise amplifiers. Limits and trends of integrated circuits. State of the art, ITRS predictions.
Teaching methodology	The methodology will combine lectures and practical sessions with the independent work of the student and the submission of a project course.
Assessment	The assessment module will be based on work done by students, attendance and class participation, practice and presentation of a project course.

CSIC

References and web links	• Philip E. Allen, Douglas R. Holberg CMOS Analog Circuit Design, 2 ^a Edició,. Oxford University Press, 2002.
	• R.L. Geiger, P.E. Allen, N.R. Strader VLSI Design Techniques for Analog and Digital Circuits,. McGraw-Hill, 1990.
	• R.J. Baker, H.W. Li, D.E. Boyce.CMOS Circuit Design, Layout and Simulation, IEEE Press, 1998.
	• R.J.Baker. CMOS mixed-signal circuit design. IEEE Press, 2002
	• Sedra, Smith. Microelectronics Circuits. Ed. Oxford (2004).
	 Behzad Razavi, Design of Analog CMOS Integrated Circuits: McGraw-Hill Higher Education, 2001. Laker, Sansen. "Design of Analog Integrated Circuits and Systems. McGraw Hill, 1994
	• T.Itoh, G.Haddad, J.Harvey. RF technologies for low power wireless communications. Wiley, 2001
	• B.Razavi, RF Microelectronics. Prentice Hall, 1998
	• http://www.itrs.net/reports.html
	• F. Maloberti, Analog Design for CMOS VLSI Systems, Kluwer, Academic Publishers, 2001

Academic year 2012-2013

			erization and reliability of ctronic devices			
Code 40273		40273				
Course		2.1				
Timetable						
ECTS credits		10				
Module type N			Mandatory x Optional			
Requirements	5	None				
Course Lang	lage	English				
Responsible F	Professor	Xavier Aymerich				
Responsible		Electro	Electronic Engineering			
		TEA	CHING TE	AM		
Professor	Departm	ent	Office	e-mail	Tutorials timetable	
Xavier Aymerich	Electronic Engineering		QC-3013	Xavier.aymerich@uab.es	To be determined	
Rosana Rodríguez	Electronic Engineeri	с	QC-3039	Rosana.rodriguez@uab.es	To be determined	
Marc Porti	Marc Porti Electronic Engineering		QC-3043	Marc.porti@uab.es	To be determined	

Academic year 2012-2013

Educational Objectives	 When the module lecture period ends, the student will be able to: Design a characterization bank of micro-nanoelectronic devices in accordance with the given requirements. Characterize electronic devices at mesoscopic and nano scale, and extract the parameters needed to perform the functional simulation of the device, whether isolated or within a circuit. Design experiments to test the reliability of micro-nanoelectronic devices, and determine the overall reliability of a circuit or system from the reliability of the devices specified or tested 		
	within it.		
	Competences	Description	
Specific competences	1. Master the characterization techniques of devices	1. Using electronic instrumentation for the electrical characterization of electronic devices in wafer or chip level, reaching nanometer scale using scanning probe microscopy techniques.	
	2. Analyze the characteristics of devices	2. Ability to analyze the electrical characteristics of the devices, and interpret their specifications, functionality and reliability characteristics.	
	3. Team work	3. Ability to organize and distribute tasks to achieve a target, efficiently and collaboratively.	
	4. Communication skills	4. Master communication skills, for presentation techniques and collective communication in group meetings.	

Structure and contents (blocks description)	1. Electrical characterization techniques for wafer level: instrumentation and test (50%). Electrical characterization techniques. C-V characteristics of the MOS structure, charge pumping method, I-V and I-t characteristics. SiO2 and electrical characterization of materials with high dielectric constant (high-k). Applications. Interference around systems characterization/measurement (conducted interference, capacitive, inductive, shielding, triaxial, coaxial, etc). Low frequency noise measurements: instrumentation and characterization.
	2. Characterization with nanometer resolution: scanning probe microscopy applied to micro-nanoelectronics. (20%). Scanning probe microscopy (SPM). STM and AFM. Measures of current (C-AFM), capacity (SCM), potential contact (KPFM), of spreading resistance (SSRM), magnetic force (MFM) and electrical (EFM) and temperature (SThM). Applications.
	3. SPICE Modeling of FETs: extraction parameters. (10%). The device model as a link between technology and circuit. MEDICI simulator. SPICE Modeling of FETs. Generations of models: first, second and third generation. Software to extract parameters: Aurora.
	4. Reliability (20%) Reliability and performance. Modeling reliability. Reliability of device, circuit and system. Mechanisms and failure mode. Accelerated test techniques. Design for reliability. Tools for calculation and simulation of reliability.
Teaching methodology	Classroom activities, laboratory sessions, with various activities that students will do during class hours and outside the classroom (independent work of the student).
Assessment	Assessment will be based on the tasks performed by students, attendance and participation in class, in addition to the presentation of a specific course project.

References and web links	<i>M. L. Green, E. P. Gusev, R. Degraeve, E. L. Garfunkel,</i> <i>"Ultrathin (<4 nm) SiO and Si-O-N gate dielectric layers for</i>
	silicon microelectronics: Understanding the processing, structure, and physical and electrical limits", Journal of Applied Physics, Vol.90, No. 5, pp. 2057-2121.
	R. Degraeve, B. Kaczer, G. Groeseneken, "Degradation and
	breakdown in thin oxide layers mechanisms, models and reliability prediction", Microelectronics Reliability, 39, pp. 1445-1460, 1999.
	S. Lombardo, J. H. Stathis, B. P. Linder, "Dielectric breakdown mechanisms in gate oxides", Journal of Applied Physics, 98, p. 121301, 2005.
	High-k gate dielectrics: Current status and materials properties
	considerations. G.D. Wilk, R.M. Wallace, J.M. Anthony, J.Appl.Phys. Vol. 86, No. 10, pp. 5243-5275, 2001.
	<i>P. De Wolf et al, Electrical characterization of semiconductor</i>
	materials and devices using scanning probe microscopy, Materials Science in Semiconductor Processing, 4(1-3), 71 (2001).
	<i>B. Ebersberger et al, Application of Scanning Probe</i>
	Mycroscopy techniques in semiconductor failure analysis, Microelectronics Reliability 41, 1449 (2001). Practical
	Reliability Engineering, Patrick D. T. O'Connor, John Wiley, 2003
	The Assurance Sciences, S. Halpner, Prentice Hall Inc; 2002.
	Relex Reference Manual; Relex Corporation, 2002
	<i>Failure Analysis Of Integrated Circuits; L.C. Wagner, Kulwer Academic Press, 1999.</i>
	http://www.veeco.com
	http://stm2.nrl.navy.mil/how-afm/how-afm.html
	http://www.chembio.uoguelph.ca/educmat/chm729/afm/firstpag.
	<u>htm</u>

Academic year 2012-2013

Module Name Embe		Embed	Ided Systems	\$		
Code 40727						
Course		2.2				
Timetable						
ECTS credits		10				
Module type M			Mandatory x Optional			
Requirements		None				
Course Langu	lage	English				
Responsible P	rofessor	Jordi C	Jordi Carrabina Bordoll			
Responsible		Microe	lectronics and	d Electronic Systems		
		TEA	CHING TEA	AM		
Professor	Departm	ent	Office	e-mail	Tutorials timetable	
Jordi Carrabina	MiSE		QC-2060	Jordi.carrabina@uab.es	To be determined	
Lluís Terés	Lluís Terés MiSE (CNM)		QC-2060	Lluis.teres@imb-cnm.csic.es	To be determined	

Academic year 2012-2013

	When the module lectur	re period ends, the student will be able to:		
Educational Objectives				
v	Have an overview of Embedded Systems. Terminology and basic			
	concepts and technologies.			
	Understand the computational requirements, power supply,			
	consumption, interconnection of the different components			
	integrated in embedded systems.			
	0	es, tools and technologies for the design of		
	<i>v</i> 1	ticularly the platform-based design		
	0 00	erent subsystems, their structure (SoC) and		
	connectivity alternative			
		d scale the architectural and		
	-	ponents of an embedded system, using		
	architectural exploration	1		
		plementation technologies for embedded		
		and heterogeneous MPSoC chips, FPGA,		
	MCM, etc.).	the use of tools valated to the specification		
		the use of tools related to the specification,		
		verification and synthesis of these systems at different levels:		
	system, software application, operating system, middleware, SoC/NoC architecture, and hardware.			
	· · · · · ·			
	SoC/NoC architecture,	and hardware.		
	· · · · · ·			
	SoC/NoC architecture,	and hardware.		
Specific competences	SoC/NoC architecture, Competences	and hardware. Description		
Specific competences	SoC/NoC architecture, Competences 1. Specification,	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available		
Specific competences	SoC/NoC architecture, Competences 1. Specification,	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields.		
Specific competences	SoC/NoC architecture, Competences 1. Specification,	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and		
Specific competences	SoC/NoC architecture, Competences 1. Specification,	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design		
Specific competences	SoC/NoC architecture, Competences 1. Specification,	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms		
Specific competences	SoC/NoC architecture, Competences 1. Specification,	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and		
Specific competences	SoC/NoC architecture, Competences 1. Specification, analysis and design	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and consumption.		
Specific competences	SoC/NoC architecture, Competences 1. Specification,	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and consumption. 2. Solve problems with a global and		
Specific competences	SoC/NoC architecture, Competences 1. Specification, analysis and design	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and consumption. 2. Solve problems with a global and critique vision. Understand flexibility in		
Specific competences	SoC/NoC architecture, Competences 1. Specification, analysis and design	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and consumption. 2. Solve problems with a global and critique vision. Understand flexibility in problem solving resulting from the HW/		
Specific competences	SoC/NoC architecture, Competences 1. Specification, analysis and design	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and consumption. 2. Solve problems with a global and critique vision. Understand flexibility in problem solving resulting from the HW/ SW codesign, and the architectural		
Specific competences	SoC/NoC architecture, Competences 1. Specification, analysis and design 2. Problem solving	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and consumption. 2. Solve problems with a global and critique vision. Understand flexibility in problem solving resulting from the HW/ SW codesign, and the architectural synthesis at MPSoC level.		
Specific competences	SoC/NoC architecture, Competences 1. Specification, analysis and design	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and consumption. 2. Solve problems with a global and critique vision. Understand flexibility in problem solving resulting from the HW/ SW codesign, and the architectural synthesis at MPSoC level. 3. Proposals for specific applications on		
Specific competences	SoC/NoC architecture, Competences 1. Specification, analysis and design 2. Problem solving	and hardware. Description 1. Specify the environment and research platform itself. Analyze the proposed embedded platforms HW/SW available for different application fields. Analyze function, architecture and performance of the SoC systems. Design applications on embedded platforms restricted in terms of cost, speed, size and consumption. 2. Solve problems with a global and critique vision. Understand flexibility in problem solving resulting from the HW/ SW codesign, and the architectural synthesis at MPSoC level.		

CSIC cademic ver

	0. Introduction
Structure and contents	Presentation of the course. Presentation of students profiles. Set
(blocks description)	goals for the course, comment content, method and evaluation
(blocks description)	work. Establish terminology. Bibliography, classical field
	o, o i ,
	publications. 1. Introduction to Embedded Systems
	<i>Embedded systems and real-time operating systems (embedded,</i>
	real-time, mobile, complex). Platform-based design
	methodology. Example of heterogeneous platforms. Examples of
	technologies and applications for embedded systems.
	2. SoC Architectures
	<i>Intellectual Property, Integration and virtual components, SoC</i>
	architectures, VSIA Model and HW/SW Implementation of SoC
	technologies. NIOS sample.
	3. Concepts and Techniques of low energy consumption
	Energy consumption and abstraction levels. Models and
	Techniques for low power consumption. Embedded systems
	management. Memory hierarchy. Example: ULP
	Microprocessors.
	4. Models and Architectures for Complex Electronic Systems
	Computational models for electronic systems. Heterogeneity
	and functional-structural polymorphism. Example: MATLAB.
	Design flow: system architecture, SW, FW, HW, physical.
	<i>Example: SystemC TLM. Performance and metrics: speed, area</i>
	and power consumption. Example: design flow from SystemC.
	Example: SystemC4NIOS. Verification: environments,
	simulators, formal methods, HIL. Virtualization: PCvirtual.
	Example: Platform Characterization MHP. MATLAB & HIL:
	Chain SDR OFDM. NoC architectures and systems. Example:
	NoCmaker. Parallel computing, distributed and reconfigurable.
	5. Introduction to Multimedia Systems
	Multimedia systems structure. DVB. Multimedia applications.
	Embedded Multimedia Platforms.
	Lectures
Teaching methodology	Seminars by experts and examples
	Laboratory sessions
	Design and Implementation of Embedded Systems and SoC
	Attendance to lectures, seminars and laboratory (50%).
Assessment	Lab practices in groups (20%).
	Preparation and presentation of work relating to the course
	content, extracted from the research work of students (30%).

CSIC Academic year

References and web links	Books
	 J.A.Fisher, P. Faraboschi C. Young "Embedded Computing - A VLIW Approach to Architecture, Compilers and Tools." Elsevier 2005. F. Balarin et al. "Hardware-Software Co-Design of Embedded Systems: The POLIS Approach". Kluwe, 1997. Ll. Terés et al. "VHDL: Lenguaje Estándar de Diseño Electrónico" McGraw-Hill, 1998. P. Bricaud, M. Keating: "Reuse Methodology Manual for System-On-A-Chip Designs". Kluwer 1999. Rajsuman Rocha. "System-on-a-Chip: Design and Test." Artech House Pub., 2000. H. Chang et al, "Surviving the SOC Revolution: A Guide to Platform-Based Design", Kluwer Academic Publishers, 1999. J.Duato, S.Yalamanchili, N.Lionel, "Interconnection Networks: An Engineering Approach", Morgan Kaufmann, 2002 F. Cathoor et al. "Custom Memory Management Methodology", Kluwer AP. 1998. F. Catthoor et al, "Data access and storage management for embedded programmable processors", Kluwer AP. 2002.
	Aarts, E. "Ambient intelligence: a multimedia perspective" IEEE Multimedia. Jan-March 2004. Vol 11, pp: 12 - 19. ISSN: 1070-986X De Man, H. "Ambient intelligence: gigascale dreams and reality Nanoscale" ISSCC 2005. Vol.1 pp. 29-35. ISBN: 0-7803-8904-2 A.L.Sangiovanni-Vincentelli. "White paper on Platform-Based Design" & "Principles on Platform-based". http://wwwcad.eecs.berkeley.edu/Respep/Research/asves/embed ded/platform_based/platform_based.htm. 2001. L. Cai, D. Gajski, "Transaction Level Modeling: An Overview," Proc. CODES + ISSS 2003. Cmar, R. et al "Platform design approach for re-configurable network appliances." Proc. ICC 2001 IEEE, p. 79-82

Academic year 2012-2013

Module Name Nano		Nanoe	lectronic De	vices		
Code		40598				
Course		2.2				
Timetable						
ECTS credits		10				
Module type			Mandatory x Optional			
Requirements	:	None				
Course Langu	lage	English	1			
Responsible P	rofessor	Jordi Suñé				
Responsible		Electronic Engineering				
		TEA	CHING TE	AM		
Professor	Departm	ent	Office	e-mail	Tutorials timetable	
Jordi Suñé	Electronic Engineering		QC-3041	Jordi.sune@uab.es	To be determined	
David Jiménez	Electronic Engineering		QC-3035	David.jimenez@uab.es	To be determined	
Xavier Oriols	Electronic Engineering		QC-3015	Xavier.oriols@uab.es	To be determined	
Enrique Miranda	Electronic Engineering		QC-3007	Enrique.miranda@uab.es	To be determined	

Academic year 2012-2013

Educational Objectives	 When the module lecture period ends, the student will be able to: Recognize the major scientific and technological challenges in the development of micro and nano electronics. Critically interpret and contextualize current research articles related to nanoelectronic devices. Determine the appropriate level of approximation to the electron transport depending on the considered device. Be able to develop a basic simulation of electron transport in devices. 		
	Competences	Description	
Specific competences	1. Problem solving	1. Solve open problems with a global vision and learn to make a critical assessment of the results.	
	2. Innovation	2. Be able to provide new innovative ideas in the design of electronic devices.	
	3. Analysis and design	3. Analysis of devices taking into account their properties with their respective physical and technological parameters in order to design/develop alternatives with optimum performance.	

Structure and contents	Block 1. From microelectronics to nanoelectronics
(blocks description)	Brief history of the development of microelectronics. State of the
(art of MOS technology and major future development problems.
	International Technology Roadmap for Semiconductors.
	Block 2. Fundamentals of Semiconductor
	Schrödinger equation. Systems of many electrons. Band
	structure. Densities of states. Occupation function. Systems of
	reduced dimensions, two-dimensional electron gas, wires and
	quantum dots.
	Block 3. Electronic transport
	<i>Hierarchy approaches to electron transport devices</i>
	Semi-classical models. Boltzmann equation. Monte Carlo
	simulation.
	Quantum Model, Landauer transmission model. Transport
	around the effective mass equation. Tunneling effects.
	Simulation at the atomic scale: semiempirical methods.
	Block 4. nanoelectronic devices
	Resonant Tunneling Diode, occasional contacts.
	MOSFETs nanometric dimensions.
	Transmission model for nanoscale MOS transistors.
	Single-electron devices. Transistors with Carbon NanoTubes and Silicon nanowires
	Spin devices.
Teaching methodology	The methodology will combine:
Teaching methodology	a) Classroom activities (20%) - Lectures
	- Lectures - Labs
	- Seminars
	b) Self-study (outside classroom) (80%) - Analysis of the current challenges of the μ-η-electronics
	technology based on research papers. Prepare an oral
	presentation for the class.
	- Solving proposed problems
	- Reading articles - Individual study
	- Individual study Assessment will be based on:
Aggoggmont	
Assessment	- Delivery of problems and issues, job analysis and oral (50%)
	presentation (50%).
	- Final exam (50%).

References and web links	M. Lundström. Fundamentals of Carrier Transport (Addison- Wesley, 1990)
	S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, 1995)
	S. Datta. Quantum Transport: Atom to Transistor (Cambridge University Press, 2005).

Academic year 2012-2013

Module Name	Master Thesis	
Code	40600	
Course	2.2	
Timetable		
ECTS credits	20	
Module type	x Mandatory Optional	
Requirements	None	
Course Language	English	
Responsible Professor	David Jiménez	
Responsible Department	Electronic Engineering	
TEACHING TEAM		
All Ph.D. professors of the Department of Electrical Engineering / Microelectronics and Electronic Systems / Telecommunications and Systems Engineering		

Academic year 2012-2013

Educational Objectives	 Develop interest and ability to do research. Master the specific field techniques. Be able to find relevant documentary sources in order to advance on the research activities. Identify new research challenges and know how they can be placed within the context of current research. 	
	Competences	Description
Specific competences	1. Problem solving in research	<i>1. Solve open problems within the own research field.</i>
	2. Innovation	2. Be able to provide new innovative ideas in the micro and nanoelectronic field.
	3. Communication skills	3. Promote the ability to communicate research advances to the scientific community.

Structure and contents (blocks description)	 Analysis of the previous research problem. Search related documentary sources. Practical work in the laboratory (simulation / experiments). Subsequent analysis of the problem. Writing a research report containing the following relevant information: research interest and opportunity within the context of current research, presentation of research methodology, main conclusions of the research, and future research lines on the topic.
Teaching methodology	Students must perform an independent research work in a related micro and nanoelectronics area, with mentoring from a Ph.D. professor of the Department of Electrical Engineering / Microelectronics and Electronic Systems / Telecommunication and Engineering Systems
Assessment	The evaluation method consists in an oral presentation of 30 minutes + 20 minutes of discussion in front of a court composed by three Ph.D. members (excluding the mentor) of the Department of Electrical Engineering / Microelectronics and Electronic Systems / Telecommunications and systems Engineering
References and web links	